> > > MLTF

Machine Learning with TensorFlow on Google Cloud Platform (MLTF)

Kursbeschreibung Kurstermine Detaillierter Kursinhalt
 

Kursüberblick

What is machine learning, and what kinds of problems can it solve? What are the five phases of converting a candidate use case to be driven by machine learning, and why is it important that the phases not be skipped? Why are neural networks so popular now? How can you set up a supervised learning problem and find a good, generalizable solution using gradient descent and a thoughtful way of creating datasets?

Zielgruppe

  • Data Engineers and programmers interested in learning how to apply machine learning in practice.
  • Anyone interested in learning how to build and operationalize TensorFlow models.

Voraussetzungen

To get the most out of this course, participants should have:

  • Experience coding in Python
  • Knowledge of basic statistics
  • Knowledge of SQL and cloud computing (helpful)

Kursziele

Learn how to write distributed machine learning models that scale in Tensorflow, scale out the training of those models, and offer high-performance predictions. Convert raw data to features in a way that allows ML to learn important characteristics from the data and bring human insight to bear on the problem. Finally, learn how to incorporate the right mix of parameters that yields accurate, generalized models and knowledge of the theory to solve specific types of ML problems. You will experiment with end-to-end ML, starting from building an ML-focused strategy and progressing into model training, optimization, and productionalization with hands-on labs using Google Cloud Platform

This course teaches participants the following skills:

  • Frame a business use case as a machine learning problem
  • Create machine learning datasets that are capable of achieving generalization
  • Implement machine learning models using TensorFlow
  • Understand the impact of gradient descent parameters on accuracy, training speed, sparsity, and generalization
  • Build and operationalize distributed TensorFlow models
  • Represent and transform features

Kursinhalt

  • How Google Does Machine Learning
  • Launching into Machine Learning
  • Intro to TensorFlow
  • Feature Engineering
  • The Art and Science of ML
Classroom Training
Modality: C

Dauer 5 Tage

inkl. Verpflegung
Verpflegung umfasst:

  • Kaffee, Tee, Saft, Wasser, Cola
  • Gebäck und Süßigkeiten
  • Frisches Obst
  • Mittagessen in einem der naheliegenden Restaurants

Gilt nur bei Durchführung durch Fast Lane. Termine, die von unseren Partnern durchgeführt werden, beinhalten ggf. ein abweichendes Verpflegungsangebot.


Termine und Buchen
 
Kurstermine

Derzeit gibt es keine Trainingstermine für diesen Kurs.  Termin anfragen

 

Cookies verbessern unsere Services. Durch die Benutzung unserer Website erklären Sie sich mit unserer Verwendung von Cookies einverstanden.   Verstanden.