Kursangebot
- Garantietermine
- Neue Trainings
- Fast Lane LIVE E-Learning
- Digitale Lernlösungen
- Fast Lane Academy»
- Hack Academy
-
Fast Lane IT Workshops»
- IT-Training by Fast Lane
- Garantietermine
- Themen im Fokus
- Professional Services
- Trainingspakete
- Hersteller im Fokus
- Adobe»
- Amazon Web Services»
- Aruba»
- Cisco»
- Citrix»
- EC-Council»
- Google Cloud»
- (ISC)²»
- Microsoft»
- NetApp»
- Palo Alto Networks»
- Red Hat»
- VMware»
-
Weitere Hersteller»
- Apple
- Arista
- Autodesk
- Automation Anywhere
- Barracuda
- Brocade
- CertNexus
- Check Point
- Cloudera
- Commvault
- CompTIA
- CWNP
- Cydrill Software Security
- DataCore
- Dell EMC
- Extreme Networks
- F5
- Fortinet
- Gigamon
- Huawei
- IBM
- Infoblox
- Juniper
- Kaspersky Lab
- KnowBe4 Security Awareness
- Micro Focus
- Nutanix
- Oracle
- Paessler
- Pivotal / Spring
- Ruckus
- Salesforce
- SAP
- ServiceNow
- SoftwareONE Lizenzmanagement
- SonicWall
- Sophos
- Splunk
- SUSE
- Symantec
- TÜV (IT-Security)
- Veeam
- Veritas
- IT- & Projektmanagement»
- ITIL®»
- PRINCE2®»
- Scaled Agile»
- Scrum»
- Atlassian»
- Themen/Technologien im Fokus
- Artificial Intelligence (AI)»
- Business & Soft Skills»
- Cloud Computing»
- Cyber Security»
- Data Center»
- Kubernetes / Container»
- Linux»
- Network Analysis / Wireshark»
- Software Development»
- Wireless & Mobility»
Data Science at Scale using Spark and Hadoop (DSSH)
Who should attend
- Developers
- Data analysts
- Statisticians
Prerequisites
- Proficiency in a scripting language
- Python is strongly preferred
- Perl or Ruby is sufficient
- Basic knowledge of Apache Hadoop
- Experience working in Linux environments
Course Objectives
After completing this class, you will learn:
- How to identify potential business use cases where data science can provide impactful results
- How to obtain, clean and combine disparate data sources to create a coherent picture for analysis
- What statistical methods to leverage for data exploration that will provide critical insight into your data
- Where and when to leverage Hadoop streaming and Apache Spark for data science pipelines
- What machine learning technique to use for a particular data science project
- How to implement and manage recommenders using Spark’s MLlib, and how to set up and evaluate data experiments
- What are the pitfalls of deploying new analytics projects to production, at scale
Course Content
Data Science at Scale using Spark and Hadoop is a 3 day instructor-led class where you will learn how scientists use data to solve problems by understanding the tools and techniques they use. Through in-class simulations, participants apply data science methods to real-world challenges in different industries and prepare for data scientist roles in the field.
Online Training
Dauer 3 Tage
Derzeit gibt es keine Online-Termine für diesen Kurs.
Classroom Training
Dauer 3 Tage
Preis (exkl. MwSt.)
- Deutschland: 2.195,– €
Derzeit gibt es keine Klassenraum-Termine für diesen Kurs.
Derzeit gibt es keine Trainingstermine für diesen Kurs.