Detaillierter Kursinhalt
Module 1: Foundations of Data Science
- 1.1 Introduction to Data Science
 - 1.2 Data Science Life Cycle
 - 1.3 Applications of Data Science
 
Module 2: Foundations of Statistics
- 2.1 Basic Concepts of Statistics
 - 2.2 Probability Theory
 - 2.3 Statistical Inference
 
Module 3: Data Sources and Types
- 3.1 Types of Data
 - 3.2 Data Sources
 - 3.3 Data Storage Technologies
 
Module 4: Programming Skills for Data Science
- 4.1 Introduction to Python for Data Science
 - 4.2 Introduction to R for Data Science
 
Module 5: Data Wrangling an Preprocessing
- 5.1 Data Imputation Techniques
 - 5.2 Handling Outliers and Data Transformation
 
Module 6: Exploratory Data Analysis (EDA)
- 6.1 Introduction to EDA
 - 6.2 Data Visualization
 
Module 7: Generative AI Tools for Deriving Insights
- 7.1 Introduction to Generative AI Tools
 - 7.2 Applications of Generative AI
 
Module 8: Machine Learning
- 8.1 Introduction to Supervised Learning Algorithms
 - 8.2 Introduction to Unsupervised Learning
 - 8.3 Different Algorithms for Clustering
 - 8.4 Association Rule Learning with Implementation
 
Module 9: Advance Machine Learning
- 9.1 Ensemble Learning Techniques
 - 9.2 Dimensionality Reduction
 - 9.3 Advanced Optimization Techniques
 
Module 10: Data-Driven Decision-Making
- 10.1 Introduction to Data-Driven Decision Making
 - 10.2 Open Source Tools for Data-Driven Decision Making
 - 10.3 Deriving Data-Driven Insights from Sales Dataset
 
Module 11: Data Storytelling
- 11.1 Understanding the Power of Data Storytelling
 - 11.2 Identifying Use Cases and Business Relevance
 - 11.3 Crafting Compelling Narratives
 - 11.4 Visualizing Data for Impact
 
Module 12: Capstone Project - Employee Attrition Prediction
- 12.1 Project Introduction and Problem Statement
 - 12.2 Data Collection and Preparation
 - 12.3 Data Analysis and Modeling
 - 12.4 Data Storytelling and Presentation